organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(2-Bromoethyl)isoindoline-1,3-dione

Xiao-Qiang Sun, Dong An and Ying Shao*

Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China Correspondence e-mail: yingshao@cczu.edu.cn

Received 23 September 2011; accepted 28 September 2011

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.010 Å; R factor = 0.061; wR factor = 0.177; data-to-parameter ratio = 13.3.

The asymmetric unit of the title compound, $C_{10}H_8BrNO_2$, contains three crystallographically independent molecules. Two of the N-C-C-Br side chains adopt *anti* conformations [torsion angles = -179.8 (5) and -179.4 (4)°] and the other is *gauche* [-66.5 (6)°]. The crystal structure features short Br···O [3.162 (5) Å] contacts, C-H···O hydrogen bonds and numerous π - π stacking interactions [centroid-centroid separations = 3.517 (4)-3.950 (4) Å].

Related literature

For general background to and applications of the title compound, see: Sheng *et al.* (2007). For the preparation, see: Clouet & Juhl (1994).

Experimental

Crystal data

C10H8BrNO2	
$M_r = 254.08$	
Triclinic, $P\overline{1}$	
a = 8.575 (2) Å	
b = 11.067 (3) Å	

c = 16.333 (5) Å
$\alpha = 99.001 \ (6)^{\circ}$
$\beta = 96.164 \ (5)^{\circ}$
$\gamma = 102.259 \ (6)^{\circ}$
V = 1480.2 (7) Å ³

Z = 6Mo $K\alpha$ radiation $\mu = 4.14 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\rm min} = 0.370, T_{\rm max} = 0.437$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ 379 parameters $wR(F^2) = 0.177$ H-atom parameters constrainedS = 1.00 $\Delta \rho_{max} = 0.83$ e Å⁻³5043 reflections $\Delta \rho_{min} = -0.64$ e Å⁻³

T = 297 K

 $R_{\rm int}=0.042$

 $0.25 \times 0.23 \times 0.20$ mm

7716 measured reflections 5043 independent reflections

3241 reflections with $I > 2\sigma(I)$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots O6^{i}$	0.93	2.59	3.301 (9)	133
C10−H10A···O3 ⁱⁱ	0.97	2.48	3.409 (8)	161
$C10-H10B\cdots O5^{iii}$	0.97	2.60	3.533 (9)	163
$C13-H13\cdots O4^{iv}$	0.93	2.52	3.448 (8)	175
C14−H14···O1	0.93	2.59	3.495 (10)	165

Symmetry codes: (i) -x + 1, -y, -z; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y - 1, z; (iv) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge Changzhou University and the Key Laboratory of Fine Chemical Engineering of Jiangsu Province for financial support (ZMF10020010 and SCZ10102271B).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6417).

References

Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Clouet, G. & Juhl, H. J. (1994). Macromol. Chem. Phys. 195, 243-251.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheng, X., Lu, X.-M., Zhang, J.-J., Chen, Y.-T., Lu, G.-Y., Shao, Y., Liu, F. & Xu, Q. (2007). J. Org. Chem. 72, 1799–1802.

Acta Cryst. (2011). E67, o2832 [doi:10.1107/S1600536811039808]

2-(2-Bromoethyl)isoindoline-1,3-dione

X.-Q. Sun, D. An and Y. Shao

Comment

The title compound, $C_{10}H_8BrNO_2$, which is an important aminoethylation reagent in the classic Gabriel Synthesis (Sheng *et al.*, 2007), was prepared by nucleophilic substitution of 1,2-dibromoethane with potassium phthalimide in DMF at room temperature (Clouet *et al.*, 1994). The title compound crystallizes in space group *P*T with three crystallographically independent molecules in the asymmetric unit, designated *A*, *B* and *C* (Fig. 1). In the crystal, the phthalimide rings are almost coplanar [r.m.s. deviations = 0.0681 (*A*), 0.0125 (*B*), 0.0113 (*C*) Å, respectively]. The molecular geometries of all molecules are essentiall similar, except for the BrCH₂CH₂ groups adopting slightly different zigzag conformations.

An interesting feature of the crystal structure is the short non-hydrogen Br…O interactions (table 1), together with intraand inter-molecular C—H…O hydrogen bonding interactions (table 2), which links the molecules into an extended three-dimensional network, as shown in Fig. 2. The crystal structure is further stabilized by intermolecular π - π stacking interactions invoving the benzene and maleinimide rings [centroid-centroid distances = 3.517 (4) - 3.950 (4) Å].

Experimental

The title compound was prepared according to literature procedures (Clouet *et al.*, 1994). Yield: 86%. Colourless blocks were obtained by slow evaporation of EtOH.

Refinement

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. View of the title compound, showing 50% probability ellipsoids.

Fig. 2. Perspective view of the packing of the title compound along b direction. Labels of atoms have been omitted for clarity.

2-(2-Bromoethyl)isoindoline-1,3-dione

Z = 6
F(000) = 756
$D_{\rm x} = 1.710 {\rm ~Mg~m}^{-3}$
Melting point: 356.0(3) K
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 3260 reflections
$\theta = 2.5 - 27.1^{\circ}$
$\mu = 4.14 \text{ mm}^{-1}$
T = 297 K
Block, colorless
$0.25\times0.23\times0.20\ mm$

Data collection

Bruker APEXII CCD diffractometer	5043 independent reflections
Radiation source: fine-focus sealed tube	3241 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.042$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000)	$h = -10 \rightarrow 10$
$T_{\min} = 0.370, T_{\max} = 0.437$	$k = -7 \rightarrow 13$
7716 measured reflections	$l = -19 \rightarrow 19$
Radiation source: fine-focus sealed tube graphite φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000) $T_{min} = 0.370, T_{max} = 0.437$ 7716 measured reflections	3241 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -10 \rightarrow 10$ $k = -7 \rightarrow 13$ $l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.177$	H-atom parameters constrained
<i>S</i> = 1.00	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1033P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5043 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
379 parameters	$\Delta \rho_{max} = 0.83 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.64 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br2	0.05219 (9)	0.17632 (7)	0.29910 (5)	0.0612 (3)
Br1	0.22870 (8)	0.96923 (6)	0.46532 (5)	0.0495 (2)
Br3	1.05699 (13)	0.37156 (10)	0.10602 (7)	0.0923 (4)
C1	0.4862 (9)	-0.2168 (6)	0.0232 (4)	0.0491 (17)
H1	0.3998	-0.2820	-0.0034	0.059*
C2	0.6406 (9)	-0.2208 (7)	0.0145 (4)	0.0538 (19)
H2	0.6596	-0.2922	-0.0173	0.065*
C3	0.7710 (9)	-0.1236 (8)	0.0510 (5)	0.059 (2)
H3	0.8748	-0.1300	0.0428	0.070*
C4	0.7475 (8)	-0.0169 (7)	0.0997 (5)	0.0528 (18)
H4	0.8346	0.0492	0.1242	0.063*
C5	0.5920 (7)	-0.0105 (6)	0.1114 (4)	0.0393 (15)
C6	0.4630 (8)	-0.1100 (5)	0.0740 (4)	0.0382 (15)
C7	0.3144 (8)	-0.0779 (6)	0.0967 (4)	0.0441 (16)
C8	0.5291 (8)	0.0885 (6)	0.1586 (4)	0.0443 (16)
C9	0.2475 (8)	0.1140 (7)	0.1804 (5)	0.0511 (18)
H9A	0.2939	0.2036	0.1878	0.061*
H9B	0.1499	0.0940	0.1400	0.061*
C10	0.2073 (8)	0.0820(7)	0.2603 (4)	0.0503 (17)
H10A	0.3041	0.1032	0.3013	0.060*
H10B	0.1612	-0.0075	0.2533	0.060*
C11	0.5109 (7)	0.6382 (5)	0.4534 (4)	0.0365 (14)
C12	0.6682 (8)	0.6298 (6)	0.4518 (5)	0.0507 (18)
H12	0.7518	0.6849	0.4893	0.061*
C13	0.6980 (8)	0.5376 (7)	0.3930 (5)	0.054 (2)
H13	0.8037	0.5308	0.3906	0.065*
C14	0.5758 (9)	0.4553 (7)	0.3379 (5)	0.0532 (19)
H14	0.6008	0.3943	0.2989	0.064*
C15	0.4148 (9)	0.4604 (6)	0.3386 (5)	0.0514 (18)
H15	0.3311	0.4043	0.3016	0.062*
C16	0.3882 (7)	0.5545 (6)	0.3979 (4)	0.0371 (14)
C17	0.2320 (7)	0.5819 (6)	0.4174 (4)	0.0389 (15)
C18	0.4407 (7)	0.7225 (5)	0.5093 (4)	0.0373 (15)
C19	0.1552 (8)	0.7387 (6)	0.5261 (4)	0.0468 (17)
H19A	0.2082	0.7887	0.5799	0.056*
H19B	0.0719	0.6707	0.5364	0.056*
C20	0.0780 (7)	0.8198 (5)	0.4764 (5)	0.0446 (17)
H20A	-0.0089	0.8432	0.5038	0.054*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H20B	0.0317	0.7716	0.4211	0.054*
C21	0.3965 (9)	0.6962 (7)	0.2211 (5)	0.058 (2)
H21	0.3061	0.6374	0.1915	0.069*
C22	0.3827 (9)	0.8007 (7)	0.2763 (5)	0.057 (2)
H22	0.2808	0.8113	0.2852	0.069*
C23	0.5206 (9)	0.8916 (7)	0.3192 (5)	0.0545 (19)
H23	0.5093	0.9624	0.3550	0.065*
C24	0.6708 (9)	0.8747 (7)	0.3077 (4)	0.0510 (17)
H24	0.7627	0.9332	0.3360	0.061*
C25	0.6838 (8)	0.7710 (6)	0.2544 (4)	0.0412 (15)
C26	0.5487 (8)	0.6835 (6)	0.2123 (4)	0.0433 (16)
C27	0.6050 (8)	0.5849 (6)	0.1569 (5)	0.0495 (17)
C28	0.8293 (8)	0.7294 (6)	0.2302 (4)	0.0450 (16)
C29	0.8764 (10)	0.5529 (7)	0.1255 (5)	0.061 (2)
H29A	0.9743	0.6128	0.1211	0.074*
H29B	0.8219	0.5150	0.0693	0.074*
C30	0.9173 (10)	0.4537 (7)	0.1703 (5)	0.064 (2)
H30A	0.8199	0.3931	0.1744	0.077*
H30B	0.9723	0.4911	0.2264	0.077*
N1	0.3639 (6)	0.0434 (5)	0.1479 (3)	0.0419 (13)
N2	0.2731 (6)	0.6854 (4)	0.4833 (3)	0.0363 (12)
N3	0.7699 (7)	0.6185 (5)	0.1727 (4)	0.0514 (15)
01	0.6004 (6)	0.1893 (5)	0.1976 (4)	0.0694 (16)
O2	0.1764 (6)	-0.1350 (5)	0.0784 (4)	0.0734 (17)
O3	0.5045 (5)	0.8060 (4)	0.5681 (3)	0.0544 (13)
O4	0.0969 (5)	0.5313 (5)	0.3867 (3)	0.0596 (14)
05	0.9687 (6)	0.7775 (5)	0.2544 (4)	0.0713 (16)
O6	0.5281 (7)	0.4928 (5)	0.1101 (4)	0.0819 (19)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br2	0.0557 (5)	0.0705 (5)	0.0602 (5)	0.0213 (4)	0.0216 (4)	0.0028 (4)
Br1	0.0543 (4)	0.0379 (4)	0.0570 (5)	0.0104 (3)	0.0134 (3)	0.0080 (3)
Br3	0.1184 (8)	0.0883 (7)	0.0948 (7)	0.0682 (6)	0.0399 (6)	0.0136 (6)
C1	0.051 (4)	0.044 (4)	0.047 (4)	0.009 (3)	0.002 (3)	0.001 (3)
C2	0.061 (5)	0.053 (4)	0.047 (4)	0.017 (4)	0.011 (4)	0.002 (3)
C3	0.054 (5)	0.084 (6)	0.047 (4)	0.034 (4)	0.017 (4)	0.007 (4)
C4	0.036 (4)	0.064 (5)	0.054 (5)	0.010 (3)	0.002 (3)	0.004 (4)
C5	0.032 (3)	0.047 (4)	0.038 (4)	0.011 (3)	0.002 (3)	0.007 (3)
C6	0.044 (4)	0.032 (3)	0.036 (4)	0.008 (3)	0.003 (3)	0.000 (3)
C7	0.030 (4)	0.059 (4)	0.037 (4)	0.005 (3)	-0.003 (3)	0.006 (3)
C8	0.045 (4)	0.040 (4)	0.046 (4)	0.009 (3)	0.007 (3)	0.002 (3)
C9	0.046 (4)	0.053 (4)	0.061 (5)	0.025 (3)	0.010 (4)	0.012 (4)
C10	0.048 (4)	0.054 (4)	0.050 (4)	0.017 (3)	0.010 (3)	0.003 (3)
C11	0.028 (3)	0.028 (3)	0.052 (4)	0.001 (2)	0.002 (3)	0.012 (3)
C12	0.031 (4)	0.043 (4)	0.078 (5)	0.002 (3)	0.005 (4)	0.020 (4)
C13	0.043 (4)	0.054 (4)	0.082 (6)	0.023 (4)	0.031 (4)	0.032 (4)

C14	0.061 (5)	0.046 (4)	0.064 (5)	0.022 (4)	0.030 (4)	0.014 (4)
C15	0.061 (5)	0.035 (4)	0.061 (5)	0.013 (3)	0.020 (4)	0.006 (3)
C16	0.038 (3)	0.033 (3)	0.040 (4)	0.008 (3)	0.004 (3)	0.006 (3)
C17	0.028 (3)	0.041 (4)	0.044 (4)	0.005 (3)	0.000 (3)	0.005 (3)
C18	0.041 (4)	0.021 (3)	0.048 (4)	0.002 (3)	0.003 (3)	0.010 (3)
C19	0.038 (4)	0.051 (4)	0.052 (4)	0.010 (3)	0.016 (3)	0.005 (3)
C20	0.027 (3)	0.032 (3)	0.073 (5)	0.011 (3)	0.005 (3)	-0.001 (3)
C21	0.048 (4)	0.045 (4)	0.078 (6)	0.005 (3)	0.008 (4)	0.016 (4)
C22	0.058 (5)	0.058 (5)	0.069 (5)	0.027 (4)	0.026 (4)	0.021 (4)
C23	0.067 (5)	0.054 (4)	0.051 (4)	0.024 (4)	0.019 (4)	0.015 (4)
C24	0.057 (4)	0.050 (4)	0.045 (4)	0.013 (3)	0.009 (4)	0.004 (3)
C25	0.039 (4)	0.034 (3)	0.049 (4)	0.011 (3)	-0.003 (3)	0.006 (3)
C26	0.043 (4)	0.041 (4)	0.048 (4)	0.014 (3)	0.005 (3)	0.008 (3)
C27	0.048 (4)	0.040 (4)	0.051 (4)	0.007 (3)	-0.004 (3)	-0.007 (3)
C28	0.042 (4)	0.044 (4)	0.048 (4)	0.010 (3)	0.006 (3)	0.004 (3)
C29	0.070 (5)	0.059 (5)	0.060 (5)	0.023 (4)	0.020 (4)	0.006 (4)
C30	0.066 (5)	0.069 (5)	0.061 (5)	0.027 (4)	0.012 (4)	0.007 (4)
N1	0.040 (3)	0.039 (3)	0.050 (3)	0.018 (2)	0.008 (3)	0.004 (2)
N2	0.031 (3)	0.026 (2)	0.050 (3)	0.007 (2)	0.009 (2)	0.000 (2)
N3	0.050 (4)	0.041 (3)	0.058 (4)	0.012 (3)	0.009 (3)	-0.009 (3)
01	0.060 (3)	0.050 (3)	0.080 (4)	0.001 (3)	0.005 (3)	-0.020 (3)
O2	0.045 (3)	0.078 (4)	0.083 (4)	0.006 (3)	-0.001 (3)	-0.010 (3)
03	0.042 (3)	0.039 (3)	0.068 (3)	0.000 (2)	-0.016 (3)	-0.003 (2)
O4	0.027 (2)	0.059 (3)	0.075 (4)	0.000 (2)	-0.006 (2)	-0.017 (3)
05	0.038 (3)	0.072 (4)	0.091 (4)	0.003 (3)	-0.001 (3)	-0.003 (3)
O6	0.074 (4)	0.057 (3)	0.094 (5)	0.008 (3)	-0.002 (3)	-0.028 (3)

Geometric parameters (Å, °)

Br2—C10	1.955 (6)	C15—H15	0.9300
Br1—C20	1.917 (6)	C16—C17	1.490 (8)
Br3—C30	1.949 (7)	C17—O4	1.191 (7)
C1—C2	1.356 (10)	C17—N2	1.399 (8)
C1—C6	1.397 (9)	C18—O3	1.211 (7)
C1—H1	0.9300	C18—N2	1.407 (8)
C2—C3	1.381 (10)	C19—N2	1.460 (7)
С2—Н2	0.9300	C19—C20	1.506 (9)
C3—C4	1.382 (10)	С19—Н19А	0.9700
С3—Н3	0.9300	С19—Н19В	0.9700
C4—C5	1.382 (9)	C20—H20A	0.9700
C4—H4	0.9300	C20—H20B	0.9700
C5—C6	1.392 (9)	C21—C26	1.363 (10)
C5—C8	1.470 (9)	C21—C22	1.385 (10)
C6—C7	1.462 (9)	C21—H21	0.9300
C7—O2	1.199 (8)	C22—C23	1.413 (11)
C7—N1	1.418 (8)	С22—Н22	0.9300
C8—O1	1.196 (8)	C23—C24	1.369 (10)
C8—N1	1.380 (8)	С23—Н23	0.9300
C9—C10	1.463 (10)	C24—C25	1.360 (9)

C9—N1	1.485 (8)	C24—H24	0.9300
С9—Н9А	0.9700	C25—C26	1.377 (9)
С9—Н9В	0.9700	C25—C28	1.489 (9)
C10—H10A	0.9700	C26—C27	1.500 (9)
C10—H10B	0.9700	C27—O6	1.191 (8)
C11—C12	1.374 (9)	C27—N3	1.369 (9)
C11—C16	1.381 (9)	C28—O5	1.196 (8)
C11—C18	1.468 (9)	C28—N3	1.385 (8)
C12—C13	1.374 (10)	C29—N3	1.488 (9)
C12—H12	0.9300	C29—C30	1.490 (10)
C13—C14	1.368 (10)	С29—Н29А	0.9700
С13—Н13	0.9300	С29—Н29В	0.9700
C14—C15	1.395 (10)	C30—H30A	0.9700
C14—H14	0.9300	С30—Н30В	0.9700
C15—C16	1.381 (9)		
Cg1…Cg4 ⁱ	3.517 (4)	Cg2···Cg6	3.950 (4)
Cg1···Cg6 ⁱⁱ	3.629 (4)	Cg3···Cg4 ^{iv}	3.603 (4)
Cg2…Cg5 ⁱⁱⁱ	3.558 (4)	Cg3···Cg5	3.843 (4)
C2—C1—C6	116.9 (7)	N2—C18—C11	105.7 (5)
C2—C1—H1	121.6	N2-C19-C20	112.6 (5)
С6—С1—Н1	121.6	N2—C19—H19A	109.1
C1—C2—C3	122.9 (7)	С20—С19—Н19А	109.1
C1—C2—H2	118.6	N2—C19—H19B	109.1
С3—С2—Н2	118.6	С20—С19—Н19В	109.1
C2—C3—C4	120.2 (7)	H19A—C19—H19B	107.8
С2—С3—Н3	119.9	C19—C20—Br1	112.4 (4)
С4—С3—Н3	119.9	C19—C20—H20A	109.1
C3—C4—C5	118.6 (7)	Br1—C20—H20A	109.1
С3—С4—Н4	120.7	С19—С20—Н20В	109.1
С5—С4—Н4	120.7	Br1-C20-H20B	109.1
C4—C5—C6	120.0 (6)	H20A—C20—H20B	107.9
C4—C5—C8	131.4 (6)	C26—C21—C22	116.9 (7)
C6—C5—C8	108.7 (5)	C26—C21—H21	121.6
C5—C6—C1	121.5 (6)	C22—C21—H21	121.6
C5—C6—C7	108.2 (5)	C21—C22—C23	121.3 (7)
C1—C6—C7	130.3 (6)	C21—C22—H22	119.4
O2—C7—N1	123.6 (6)	C23—C22—H22	119.4
O2—C7—C6	131.0 (6)	C24—C23—C22	119.5 (7)
N1—C7—C6	105.4 (5)	C24—C23—H23	120.3
O1—C8—N1	124.9 (6)	С22—С23—Н23	120.3
O1—C8—C5	129.2 (6)	C25—C24—C23	119.0 (7)
N1—C8—C5	105.8 (5)	C25—C24—H24	120.5
C10C9N1	110.8 (6)	C23—C24—H24	120.5
С10—С9—Н9А	109.5	C24—C25—C26	121.1 (6)
N1—C9—H9A	109.5	C24—C25—C28	130.4 (6)
С10—С9—Н9В	109.5	C26—C25—C28	108.5 (5)
N1—C9—H9B	109.5	C21—C26—C25	122.2 (6)
Н9А—С9—Н9В	108.1	C21—C26—C27	130.2 (7)

C9—C10—Br2	108.9 (5)	C25—C26—C27	107.5 (6)
С9—С10—Н10А	109.9	O6—C27—N3	124.8 (7)
Br2—C10—H10A	109.9	O6—C27—C26	129.5 (7)
С9—С10—Н10В	109.9	N3—C27—C26	105.6 (5)
Br2—C10—H10B	109.9	O5—C28—N3	125.8 (6)
H10A—C10—H10B	108.3	O5—C28—C25	129.1 (6)
C12—C11—C16	120.2 (6)	N3—C28—C25	105.1 (6)
C12-C11-C18	130.8 (6)	N3—C29—C30	109.2 (6)
C16—C11—C18	109.0 (5)	N3—C29—H29A	109.8
C13—C12—C11	117.9 (7)	С30—С29—Н29А	109.8
C13—C12—H12	121.0	N3—C29—H29B	109.8
C11—C12—H12	121.0	С30—С29—Н29В	109.8
C14—C13—C12	121.6 (6)	H29A—C29—H29B	108.3
C14—C13—H13	119.2	C29—C30—Br3	107.4 (5)
С12—С13—Н13	119.2	С29—С30—Н30А	110.2
C13—C14—C15	121.9 (7)	Br3—C30—H30A	110.2
C13-C14-H14	119.0	С29—С30—Н30В	110.2
C15-C14-H14	119.0	Br3—C30—H30B	110.2
C16—C15—C14	115.4 (7)	H30A—C30—H30B	108.5
С16—С15—Н15	122.3	C8—N1—C7	111.9 (5)
C14—C15—H15	122.3	C8—N1—C9	125.3 (5)
C15—C16—C11	123.0 (6)	C7—N1—C9	122.6 (5)
C15-C16-C17	128.8 (6)	C17—N2—C18	111.7 (5)
C11—C16—C17	108.1 (5)	C17—N2—C19	123.9 (5)
O4—C17—N2	123.9 (6)	C18—N2—C19	124.1 (5)
O4—C17—C16	130.7 (6)	C27—N3—C28	113.3 (6)
N2-C17-C16	105.5 (5)	C27—N3—C29	123.9 (6)
O3—C18—N2	123.8 (6)	C28—N3—C29	122.4 (6)
O3—C18—C11	130.5 (6)		
C6—C1—C2—C3	-2.2 (11)	C22—C21—C26—C25	-1.4 (11)
C1—C2—C3—C4	0.9 (12)	C22-C21-C26-C27	-178.0 (7)
C2—C3—C4—C5	0.5 (11)	C24—C25—C26—C21	0.6 (11)
C3—C4—C5—C6	-0.4 (11)	C28—C25—C26—C21	-179.5 (7)
C3—C4—C5—C8	-179.7 (7)	C24—C25—C26—C27	177.9 (6)
C4—C5—C6—C1	-1.0 (10)	C28—C25—C26—C27	-2.2 (8)
C8—C5—C6—C1	178.4 (6)	C21—C26—C27—O6	-2.9 (14)
C4—C5—C6—C7	-179.9 (6)	C25—C26—C27—O6	-179.9 (8)
C8—C5—C6—C7	-0.5 (7)	C21—C26—C27—N3	179.4 (8)
C2—C1—C6—C5	2.2 (10)	C25—C26—C27—N3	2.4 (8)
C2—C1—C6—C7	-179.0 (7)	C24—C25—C28—O5	2.0 (13)
C5—C6—C7—O2	179.6 (8)	C26—C25—C28—O5	-177.9 (8)
C1—C6—C7—O2	0.8 (13)	C24—C25—C28—N3	-178.9 (7)
C5—C6—C7—N1	0.3 (7)	C26—C25—C28—N3	1.2 (8)
C1—C6—C7—N1	-178.5 (7)	N3—C29—C30—Br3	-179.8 (5)
C4—C5—C8—O1	1.1 (14)	O1—C8—N1—C7	178.5 (7)
C6—C5—C8—O1	-178.2 (7)	C5—C8—N1—C7	-0.3 (8)
C4—C5—C8—N1	179.8 (7)	O1—C8—N1—C9	2.3 (12)
C6—C5—C8—N1	0.5 (8)	C5—C8—N1—C9	-176.5 (6)
N1—C9—C10—Br2	-179.4 (4)	O2—C7—N1—C8	-179.3 (7)

C16—C11—C12—C13	0.8 (10)	C6—C7—N1—C8	0.0 (7)		
C18—C11—C12—C13	177.9 (6)	O2-C7-N1-C9	-3.1 (11)		
C11—C12—C13—C14	-0.5 (11)	C6—C7—N1—C9	176.3 (6)		
C12—C13—C14—C15	-0.2 (11)	C10-C9-N1-C8	-96.1 (8)		
C13-C14-C15-C16	0.6 (11)	C10—C9—N1—C7	88.1 (8)		
C14-C15-C16-C11	-0.3 (10)	O4—C17—N2—C18	177.6 (6)		
C14—C15—C16—C17	-177.0 (6)	C16—C17—N2—C18	-2.4 (7)		
C12-C11-C16-C15	-0.4 (10)	O4—C17—N2—C19	4.2 (10)		
C18—C11—C16—C15	-178.1 (6)	C16—C17—N2—C19	-175.8 (6)		
C12-C11-C16-C17	176.9 (6)	O3—C18—N2—C17	-176.3 (6)		
C18-C11-C16-C17	-0.7 (7)	C11-C18-N2-C17	2.0 (7)		
C15—C16—C17—O4	-1.0 (12)	O3—C18—N2—C19	-2.9 (9)		
C11—C16—C17—O4	-178.1 (7)	C11—C18—N2—C19	175.3 (6)		
C15-C16-C17-N2	179.0 (6)	C20-C19-N2-C17	-78.0 (8)		
C11-C16-C17-N2	1.9 (7)	C20-C19-N2-C18	109.4 (7)		
C12-C11-C18-O3	0.1 (12)	O6—C27—N3—C28	-179.5 (8)		
C16—C11—C18—O3	177.4 (6)	C26—C27—N3—C28	-1.7 (8)		
C12-C11-C18-N2	-178.0 (7)	O6—C27—N3—C29	8.0 (13)		
C16-C11-C18-N2	-0.7 (7)	C26—C27—N3—C29	-174.2 (6)		
N2-C19-C20-Br1	-66.5 (6)	O5—C28—N3—C27	179.6 (7)		
C26—C21—C22—C23	1.9 (11)	C25—C28—N3—C27	0.4 (8)		
C21—C22—C23—C24	-1.6 (11)	O5-C28-N3-C29	-7.8 (12)		
C22—C23—C24—C25	0.7 (11)	C25—C28—N3—C29	173.1 (6)		
C23—C24—C25—C26	-0.2 (11)	C30-C29-N3-C27	-93.1 (9)		
C23—C24—C25—C28	179.9 (7)	C30—C29—N3—C28	95.1 (8)		
Symmetry codes: (i) $-x+1$, $-y$, $-z$; (ii) x , $y-1$, z ; (iii) $-x+1$, $-y+1$, $-z+1$; (iv) x , $y+1$, z .					

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A			
C2—H2···O6 ⁱ	0.93	2.59	3.301 (9)	133			
C10—H10A····O3 ⁱⁱⁱ	0.97	2.48	3.409 (8)	161			
C10—H10B…O5 ^v	0.97	2.60	3.533 (9)	163			
C13—H13···O4 ^{vi}	0.93	2.52	3.448 (8)	175			
C14—H14…O1	0.93	2.59	3.495 (10)	165			
Symmetry codes: (i) - <i>x</i> +1, - <i>y</i> , - <i>z</i> ; (iii) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1; (v) <i>x</i> -1, <i>y</i> -1, <i>z</i> ; (vi) <i>x</i> +1, <i>y</i> , <i>z</i> .							

Fig. 1

Fig. 2

